Unbalanced oxidant-induced DNA damage and repair in COPD: a link towards lung cancer.

نویسندگان

  • Gaetano Caramori
  • Ian M Adcock
  • Paolo Casolari
  • Kazuhiro Ito
  • Elen Jazrawi
  • Loukia Tsaprouni
  • Gino Villetti
  • Maurizio Civelli
  • Chiara Carnini
  • Kian Fan Chung
  • Peter J Barnes
  • Alberto Papi
چکیده

BACKGROUND Chronic obstructive pulmonary disease (COPD) is characterised by oxidative stress and increased risk of lung carcinoma. Oxidative stress causes DNA damage which can be repaired by DNA-dependent protein kinase complex. OBJECTIVES To investigate DNA damage/repair balance and DNA-dependent protein kinase complex in COPD lung and in an animal model of smoking-induced lung damage and to evaluate the effects of oxidative stress on Ku expression and function in human bronchial epithelial cells. METHODS Protein expression was quantified using immunohistochemistry and/or western blotting. DNA damage/repair was measured using colorimetric assays. RESULTS 8-OH-dG, a marker of oxidant-induced DNA damage, was statistically significantly increased in the peripheral lung of smokers (with and without COPD) compared with non-smokers, while the number of apurinic/apyrimidinic (AP) sites (DNA damage and repair) was increased in smokers compared with non-smokers (p = 0.0012) and patients with COPD (p < 0.0148). Nuclear expression of Ku86, but not of DNA-PKcs, phospho-DNA-PKcs, Ku70 or γ-H2AFX, was reduced in bronchiolar epithelial cells from patients with COPD compared with normal smokers and non-smokers (p < 0.039). Loss of Ku86 expression was also observed in a smoking mouse model (p < 0.012) and prevented by antioxidants. Oxidants reduced (p < 0.0112) Ku86 expression in human bronchial epithelial cells and Ku86 knock down modified AP sites in response to oxidative stress. CONCLUSIONS Ineffective DNA repair rather than strand breakage per se accounts for the reduced AP sites observed in COPD and this is correlated with a selective decrease of the expression of Ku86 in the bronchiolar epithelium. DNA damage/repair imbalance may contribute to increased risk of lung carcinoma in COPD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Radiosensitivity and Repair Kinetics of Gamma-Irradiated Leukocytes from Sporadic Prostate Cancer Patients and Healthy Individuals Assessed by Alkaline Comet Assay

Background: Impaired DNA repair mechanism is one of the main causes of tumor genesis. Study of intrinsic radiosensitivity of cancer patients in a non-target tissue (e.g. peripheral blood) might show the extent of DNA repair deficiency of cells in affected individuals and might be used a predictor of cancer predisposition. Methods: Initial radiation-induced DNA damage (ratio of Tail DNA/Head DN...

متن کامل

Studies on electron beam induced DNA damage and repair kinetics in lymphocytes by alkaline comet assay

Background: Exposure to ionizing radiation is known to induce oxidative stress followed by damage to critical biomolecules like lipids, proteins and DNA through radiolysis of cellular water. Since radiation has been widely used as an important tool in therapy of cancer, the detailed investigation regarding the DNA damage and repair kinetics would help to predict the radiation sensitivity of cel...

متن کامل

Mitochondrial DNA integrity may be a determinant of endothelial barrier properties in oxidant-challenged rat lungs.

In cultured pulmonary artery endothelial cells and other cell types, overexpression of mt-targeted DNA repair enzymes protects against oxidant-induced mitochondrial DNA (mtDNA) damage and cell death. Whether mtDNA integrity governs functional properties of the endothelium in the intact pulmonary circulation is unknown. Accordingly, the present study used isolated, buffer-perfused rat lungs to d...

متن کامل

Acrolein induces mtDNA damages, mitochondrial fission and mitophagy in human lung cells

Acrolein (Acr), a highly reactive unsaturated aldehyde, can cause various lung diseases including asthma, chronic obstructive pulmonary disease (COPD), and lung cancer. We have found that Acr can damage not only genomic DNA but also DNA repair proteins causing repair dysfunction and enhancing cells' mutational susceptibility. While these effects may account for Acr lung carcinogenicity, the mec...

متن کامل

DNA damage and cellular abnormalities in tuberculosis, lung cancer and chronic obstructive pulmonary disease

BACKGROUND Tuberculosis (TB), Lung Cancer (LC) and Chronic Obstructive Pulmonary Diseases (COPD) affect millions of individuals worldwide. Monitoring of DNA damage in pathological situations has been investigated because it can add a new dimension to clinical expression and may represent a potential target for therapeutic intervention. The aim of this study was to evaluate DNA damage and the fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Thorax

دوره 66 6  شماره 

صفحات  -

تاریخ انتشار 2011